68ème Journée d'étude

« Terrains de sports en gazon synthétique, le point sur la situation »

Présentation des projets de rénovation des terrains de sports en gazon synthétique

• Ville de Bruxelles - Labosport

Introduction

Ville de Bruxelles : projet de rénovation de 7 terrains (usure, etc...)

Contexte sur la problématique des terrains synthétiques

Mesure de précautions : études préalables - Labosport

- 1. Présentation par Labosport des types de remplissages et normes associées ;
- 2. Présentation des projets Ville et de la méthode ;
- 3. Débat concernant le SBR : état des études ;
- 4. Résultats sur les terrains Villes ;
- 5. Recommandations complémentaires qui seront adoptées par la VBX ;

1. Labosport – différents types de remplissages et normes associées

Gazon synthétique : aperçu des différents types de remplissage et normes associées

AGENDA

1. Les différents types de remplissages : principales caractéristiques et critères de choix

2. Débat SBR: que disent les études ? prochaines étapes

3. Les normes / tests à réaliser en cas de changement de remplissage

Les granulats sont clés à plusieurs niveaux

- 1. Maintenir la fibre et stabiliser le gazon (poids)
- 2. Conférer à la surface de jeu ses propriétés sportives (souplesse, absorption des chocs, résistance rotationnelle) et un confort de jeu (friction, chaleur)
- 3. S'approcher le plus possible d'une pelouse naturelle (couleur, odeur)

- 4 GRANDES FAMILLES -

THERMO- DURCISSABLE Polymérisation irréversible: infusible - non transformable	THERMO- PLASTIQUES Fusibles	ORGANIQUES "VEGETAL"	INORGANIQUES "SABLE"
Granulats de pneu (SBR)EPDM neuf / recyclé	élastomères	Fibre coco & similairesLiège / écorce	Sable (encapsulé ou non)Matières inorganiques
 Caoutchouc recyclé Mélange de thermodurcissables 	oléfines • PE: polyéthylène • Mélange de thermoplastiques	d'arbre • Mélange de matières organiques	recyclée

THERMO-DURCISSABLES: SBR

Nom	Description	Densité (g/cm³) (±10%)	Principaux avantages	Principaux inconvénients
SBR ambiant	PUNR: granulat de caoutchouc SBR issus de broyat de pneu		 Coût (95% des terrains) Performance sportive (excellent élasticité et durabilité) Haute résistance UV 	 Perception négative du caoutchouc Odeur de caoutchouc (en saison chaude) Esthétique (noir)
SBR Cryo	PUNR cryogénisés	0,4 - 0,5	Idem SBR (sauf cout)Réduction des particules fines	Idem SBRApprovisionnement limité
SBR encapsulé	PUNR enrobé par une couche de résine PU ou acrilyque (marron ou vert)		 Idem SBR Réduction des particules fines Esthétique – Couleur 	 Différentes qualités d'enrobage existantes sur le marché Usure prématurée du revêtement selon la qualité

THERMO-DURCISSABLES: EPDM

Nom	Description	Densité (g/cm³) (±10%)	Principaux avantages	Principaux inconvénients
EPDM	Granulat Ethylène-Pro- pylène-Diène Monomère (EPDM) fabriqué à partir de caoutchouc synthétique vierge ou recyclé	0,6 - 0,7	 Performance sportive (Elasticité) Bonne répartition de la taille des particules due à sa forme angulaire Particules fines limitées 	 Coût élevé Résistance UV médium Ne peut être réutilisé Différentes qualités (origine diverse / recyclage): une faible teneur en polymère peut entraîner des problèmes de vieillissement prématuré et une agglomération Approvisionnement limité

THERMO-PLASTIQUES

Nom	Description	Densité (g/cm³) (±10%)	Avantages	Inconvénients
TPE - TPO	Thermoplastique à base d'élastomère ou d'oléfine	0,75 – 0,85	 Performance sportive (Elasticité) Inodore Particules fines limitées Peut être recyclé 	 Coût Résistance UV médium Différentes qualités (faible teneur en polymère => vieillissement, problèmes d'agglomération) Approvisionnement limité Remplissage fluent - homométrie et forme des granulats
PE	Granulats PE à partir des fibres du GS	0,4	 Polymère identique aux fibres synthétiques Inodore et sans poussière Peut être recyclé 	 Coût Performance sportive limitée (dureté) Approvisionnement limité Remplissage fluent - homométrie et forme des granulats

ORGANIQUES

Nom	Description	Densité (g/cm³) (±10%)	Avantages	Inconvénients
Liège	100% liège naturel	0,2 - 0,3	 Entièrement naturel Matière organique la plus durable Résistant aux UV et ignifugé Réduction de la chaleur Esthétique naturelle du sol Faible densité Inodore et imputrescible 	 Coût (combiné à une souscouche) Performance sportive limité Déplacement/perte du remplissage lors de fortes pluies (faible densité) Entretien supplémentaire Addition de remplissage à prévoir Approvisionnement limité
Mélange de matériau d'origine végétale	Fibre de coco ou similaire, écorce d'arbre		 Réduction de la chaleur Esthétique naturelle du sol Faible densité Inodore 	 Idem LIEGE Entretien supplémentaire requis (maintien humidité) Dégradation des matériaux (problème de perméabilité - compactage)

INORGANIQUES

Nom	Description	Densité (g/cm³) (±10%)	Avantages	Inconvénients
Sable	Granulats de sable arrondis tamisés à base de silice		Faible coûtFaible maintenanceBonne perméabilitéApprovisionnement	 Dureté Abrasivité (utilisateurs et fibres) Pollution (colmatage)
Sable enrobé	Granulats de sable arrondis tamisés à base de silice enrobé avec une résine (PU ou acrilyque)	1,4 - 1,5	Faible maintenanceBonne perméabilitéEsthétisme	 Abrasivité (utilisateurs et fibres> dégradation revêtement) Dureté Coût (combiné à une sous-couche) Pollution (colmatage) Qualité d'enrobage variable : pollution fibre et remplissage

Synthèse des avantages & inconvénients

	PNUR - SBR	EPDM neuf	EPDM recyclé	TPE neuf	ORGANIQUE
Prix (€/t)	5	2	3	1	2
Durabilité	5	3	1	1	1
Performances sportives	5	4	3	2	1
Maintenance	5	5	5	5	1
Perception (couleur, odeur, T°)	2	5	4	5	5
Perception (Santé/environment)	1	3	2	3	5

Part de marché 90% 5% <1 % <1 % <5 %

2. Les projets de la Ville et la méthode

Situation des projets

Situation des projets

Centre sportif de NOH – Terrains 1, 2 et 3

Complexe du Heysel Annexe 4

Méthode de projet

PROGRAMMATION

- Choix du site, de l'implantation, orientation (quand possible) ; Identification des points critiques : arbres, talus, etudes préalables dont essais de sol, piézomètres, polution, réseaux, etc... Prise en compte de l'entretien et maintenance (accessibilité, voies carrossables, drains, etc...) ;
- Adéquation avec l'utilisation et la performance voulue ;
- Développement durable : entretien, maintenance, recyclage, arrosage, traitement des eaux, pollution, etc...;

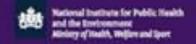
FONDATIONS

- Essais de sol;
- Terrassements et fond de coffre Importance de la pente, des matériaux de remplissage ;
- Couche anti-contaminante;
- Couche de fondation;

RESEAUX

- Assainissement et égouttage;
- Drainage;
- Système de traitement (new) ;
- GAZON SYNTHETIQUE
- SYSTEME D'ARROSAGE ET SUPPORTS AU SPORT
- Controles techniques contrôles de réception
 - Correspondance aux normes
 - Agréation du terrain
 - Contrôles techniques

3. Débat concernant le SBR



Pays-Bas: Etude RIVM

- Institut national néerlandais pour la santé publique et l'environnement (Déc. 2016)
- Selon leurs résultats, le jeu sur les terrains en gazon synthétique n'est pas dangereux pour la santé.
 - Les granulés de caoutchouc contiennent de nombreuses substances (HAP, BPA, plastifiants...) mais relarguées en quantités limitées.
 - Certains métaux peuvent migrer dans l'environnement
 - Le risque supplémentaire de cancer est très inférieur au maximum admissible et légèrement supérieur au risque négligeable (1 cas de cancer supplémentaire sur 1 million).
 - Absence de lien entre les leucémies et la multiplication des terrains en Gazon Synthétique ces dernières années.
- → Fixer des limites HAP plus sévères que celles actuelles dans REACH (entrée 50 Annexe XVII)

Evaluation of health risks of playing sports on synthetic turf pitches with rubber granulate

Scientific background document

http://www.rivm.nl/en/About RIVM/Mission and strategy

Etude ECHA

- Agence européenne des produits chimiques (février 2017)
- Avec les concentrations de HAP mesurées dans les granulés de caoutchouc recyclés (<20 mg / kg), le risque de cancer à vie pour les joueurs et les travailleurs est très faible
- Le risque sur les métaux lourds est négligeable (niveaux sous la norme des jouets)
- Pas de problèmes relevés sur les autres substances (à part les COVs en indoor qui peuvent provoquer des irritations aux yeux et à la peau).
- → Recommandations:
 - Faire tester les granulats utilisés sur les terrains.
 - Ventilation adaptée en indoor
 - Respecter des règles d'hygiène basiques
 - Engager la réflexion sur les exigences pour garantir les faibles niveaux de HAP

ANNEX XV REPORT

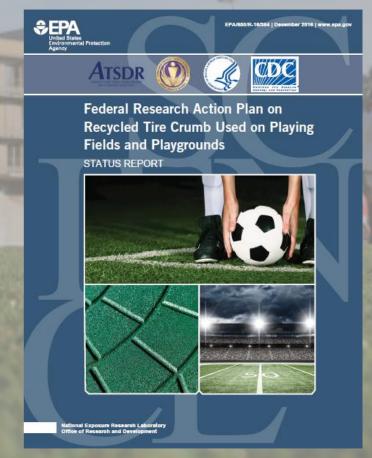
AN EVALUATION OF THE POSSIBLE HEALTH RISKS OF RECYCLED RUBBER GRANULES USED AS INFILL IN SYNTHETIC TURF SPORTS FIELDS

Substance Names: Substances in recycled rubber granules used as infill

material in synthetic turf

EC Number: Not relevant
CAS Number: Not relevant

Submitter: ECHA


Date: 28 February 2017

ECHA has found no reason to advise people against playing sports on synthetic turf containing recycled rubber granules as infill material. This advice is based on ECHA's evaluation that there is a very low level of concern from exposure to substances found in the granules. This is based on the current evidence available. However, due to the uncertainties, ECHA makes several recommendations to ensure that any remaining concerns are eliminated.

https://echa.europa.eu/fr/about-us/who-we-are/mission

US EPA – Etat de Washington

- Agence de Protection de l'Environnement Américaine (Décembre 2016)
- Plan d'étude sur 2/3 ans. Uniquement la partie concernant le recensement exhaustif des études scientifiques sur le sujet a été conduite. 97 études référencées et catégorisées.
- Une conclusion est que certains domaines sont bien étudiés (niveau des substances contenues dans les granulats) et d'autres moins (exposition humaine).
- Etude grandeur nature sur l'exposition conduite en automne 2017
- Département de la santé de l'état de Washington (Avril 2017): le nombre statistique de cas de cancer recensés par une entraineuse sont moins nombreux que ceux de la population moyenne de la tranche d'âge concernée de l'état de Washington.

Règlementation et Normes: aperçu global

Règlementation Norme

Labels Privés Commentaires

Production Pneus

Etape

REACH

REACH: déclaratif fabricant. Pas de fréquence imposée, mais engage sa responsabilité

Granulation

Technigom : origine tracée + tests aléatoires par laboratoires tiers

Transport

Installation sur site

FFF (NF P90-112): identification et environnement

Testyourinfill: toxicité (HAPs REACH & Norme des jouets)

Cahier des charges des fabricants

Règlementation REACH - pneumatiques

- Le règlement européen REACH impose à tous les **fabricants** et **importateurs** de substances chimiques mises sur le marché (>1t/an), d'enregistrer ces substances auprès de ECHA
- Les entreprises doivent identifier et gérer les risques liés aux substances qu'elles fabriquent et commercialisent dans l'UE (déclaration de conformité des produits mis sur le marché européen)
- Depuis 2010, les pneumatiques produits dans les pays de l'Union Européenne doivent se conformer à cette réglementation

Règlementation REACH – Granulats de pneu

Le cas des granulats de pneus utilisés pour les gazons synthétiques a récemment été clarifié par la Commission Européenne (CARACAL)

Les granulats de caoutchouc utilisés comme matériaux de remplissage pour les surfaces de gazon synthétique sont classées comme « mélanges » (« mixtures ») pour la réglementations européennes REACH

En tant que tel, les granulats de caoutchouc doivent être conforme à l'entrée 28 de l'annexe XVII du règlement REACH (les HAPs font partie de cette entrée)

Analyses liées à REACH - HAPs

Norme Jouets

Analyse des métaux lourds selon EN 71-3 (Norme des jouets):

Parameter Elément Elemento	Unit Unité Unidad	Test method Méthode d'essai El método de ensayo	Result Résultat Resultado	NF EN 71-3
Aluminium	mg/kg MS	NF EN ISO 17294-1 et 2	3.5	< 70 000
Antimony	mg/kg MS	NE EN ISO 17294-1 et 2	< 0.5	< 560
Arsenic	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.25	< 47
Barium	mg/kg MS			
Boron	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.5	< 15 000
Cadmium	mg/kg MS	ICP J	< 0.5	< 17
Chromium total	mg/kg MS	NF EN ISO 17294-1 et 2	< 1	-
Chromium III	mg/kg MS	NF EN ISO 11885	< 1	< 460
Chromium VI	mg/kg MS	NF T 90-043	< 0.2	< 0.2
Cobalt	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.5	< 130
Copper	mg/kg MS	NF EN ISO 11885	18	< 7 700
Lead			< 0.5	< 160
Maganese	mg/kg MS	NF EN ISO 17294-1 et 2	1	< 15 000
Mercury	mg/kg MS	NF EN ISO 17852	< 0.005	< 94
Nickel	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.5	< 930
Selenium	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.25 < 0.5	< 460
Strontium	mg/kg MS			
Tin	mg/kg MS	NF EN ISO 17294-1 et 2	< 0.5	< 180 000
Zinc	mg/kg MS	NF EN ISO 11885	120	< 46 000

Remarque:

A l'origine, cette norme n'est pas destinée à être appliquée aux gazons synthétiques ou autres sols sportifs

Elle permet néanmoins de simuler la migration des métaux par ingestion et de comparer par rapport aux seuils des jouets

A défaut de norme spécifique, c'est celle qui fait référence aujourd'hui

Initiative Labosport: « testyourinfill.fr »

Votre granulat analysé SOUS 3 SEMAINES

L'analyse chimique permet d'identifier la nature et l'origine du matériau et d'alerter sur toute teneur inhabituelle en élément chimique d'après nos experts.

QUI PEUT CONDUIRE CE TYPE D'ANALYSES ?

Tout laboratoire équipé en chromatographie gazeuse et en ICP peut procéder à ces analyses.

Labosport, laboratoire indépendant certifié ISO-17025 spécialisé dans les surfaces sportives, teste les matériaux de remplissage depuis 2005. Nous pouvons comparer votre remplissage à notre base de données et dès lors interpréter précisément les résultats.

COMMENT CELA FONCTIONNE?

ÉTAPE 1

Passez votre commande. Notre service clientèle vous adressera un bon d'expédition.

ÉTAPE 2

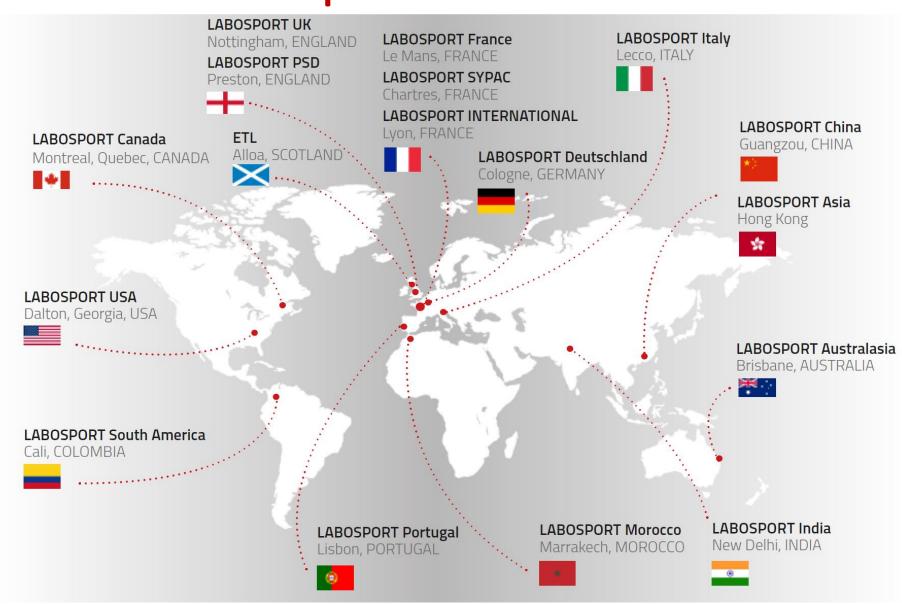
Prélevez un échantillon du matériau de remplissage de votre terrain selon les instructions de prélèvement reçues avec la confirmation de commande.

Commande en ligne des tests HAPs REACH & Métaux lourds (Norme jouets)

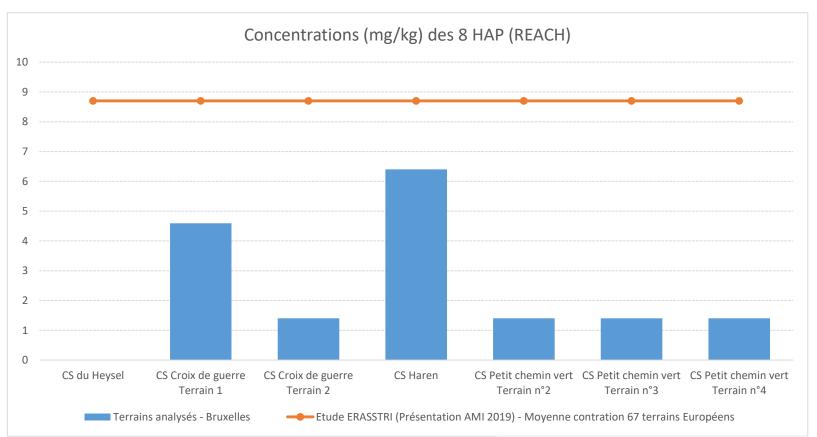
Service qui s'adaptera en fonction de l'évolution de la réglementation

Prochaines étapes

Des études à grande échelle (1-2 ans) sont en cours (EPA, ETRMA) Les Pays-bas ont d'ores et déjà notifié leur intention de faire une proposition à l'ECHA pour faire évoluer la règlementation REACH pour les granulats de pneus réutilisés


6 mois de consultation publique

1ere opinion des comités ECHA (risques et socioéconomiques)


60 jours consultation Opinion finale Décision de la commission

Rédaction
Evolution de la réglementation en 2020 au plus tôt

Labosport : un acteur global pour le contrôle et la certification des sols sportifs

4. Résultats sur les terrains Villes

Concentration 8 Hap (mg/kg) - REACH										
Nature granulat	-	ELT	Liege	ELT	EPDM	EPDM	EPDM			
Complexe sportif	CS du Heysel	CS Croix de guerre Terrain 1	CS Croix de guerre Terrain 2	CS Haren		CS Petit chemin vert Terrain n°3				
Granulats	0	4.59	1.4	6.4	1.4	1.4	1.4			
ERASSTRI	8.7	8.7	8.7	8.7	8.7	8.7	8.7			
RIVM	-	-	-	-	-	-	-			
Fibres	1.4	1.52		9	1.4	1.4	1.4			

	Eco-toxicologie									
Constituant	Unité	Concentrations						Exigences Wallonie - Decret des sols (VS)	Exigences Wallonie - Decret des sols (VI)	Exigences NFP90112
Pb	mg/l	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0.01	0.04	≤0,025
Cd	mg/l	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005	0.005	0.02	≤0,005
Cr totale	mg/l	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0.05	0.1	≤0,05
Cr Hexavalent	mg/l	<0,008	<0,008	<0,008	<0,008	<0,008	<0,008	0.009	0.09	≤0,008
Sn	mg/l	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	-	-	≤0,04
Zn	mg/l	0.38	0.02	0.39	0.05	0.03	0.03	0.2	0.4	≤0,5
COD	mg/l	18	30	19	33	30	24			≤50
Hg	mg/l	<0,0001	<0,0001	<0,0001	0.00066	<0,0001	<0,0001	0.001	0.004	≤0,001
EOX	mg/kg	33	80	20	88	56	120	-	-	100

5. Recommandations complémentaires à l'étude qui adapteront la méthodologie

- 1. « Return » sur l'utilisation des terrains pour mieux cibler l'utilisation et choisir au mieux les performances à atteindre;
- 2. Approfondir l'étude comparative des types de granulats pour opérer un choix en accord avec la politique environnementale (nature des granulats, conditions d'entretien, etc...)
- 3. Aux cahier des charges : contrôles techniques complémentaires
 - 1. Livraison
 - 2. Mise en œuvre
 - 3. Tests de diffusion dans l'eau
- 4. Augmenter les mesures de traitement des eaux
 - 1. Eaux d'infiltrations
 - 2. Adaptation du système d'acodrains
 - 3. Adaptation du système de récolte des eaux : bac décantation (lourd, flottant), filtres, chambre de prélèvement, etc...
 - 4. Adaptation des méthodes d'entretien : désherbant...